Inter-Client Exchange Library

X Consortium Standard

Ralph Mor, X Consortium



Inter-Client Exchange Library: X Consortium Standard
by Ralph Mor

X Version 11, Release 7.7

Version 1.0
Copyright © 1993, 1994, 1996 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the " Software"),
to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall beincluded in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.




Table of Contents

L OVEIVIEIW OF TCE ..ottt et e et eeena s 1
2. The ICE Library - C Language Interface to ICE .......cooviiiiiiiii e 2
3. INENAEA AUIENCE ...ttt e e et 3
4. Header Files and Library NAIME .......ccoouuiiiiiii e 4
5. NOE ON PrEfIXES ..ot et e et et 5
6. ProtoCOl REJISLIHON .. ...uuueiiiiei ettt e ettt e e et e e e e et e e e eebaaeeees 6
Callbacks for Processing MESSAES ......ccvuuuieiiiiiee ittt ettt e e e e e 9
AUthentication MENOUS .........coouuniiii e 11
7. TCE COMNECHIONS ....eetti ettt ettt ettt ettt ettt ettt r ettt e ettt e e e et e e e e et e e ennans 13
Opening an ICE CONMNECHION ......c.uuuiiiiiiiiee et e et e e e e e e e ne e 13
Listening for ICE CONNECLIONS .........oiiiiiieiiiii ettt 14
Host Based Authentication for ICE CONNECLIONS .........oeeviiiieiiiiieeeeie e e 15
ACCEPLING ICE CONNECLIONS .....eettiieeieiie ettt e et e ettt e et e et et e e e e et e e eeraaeeees 16
CloSING ICE CONNECLIONS ......uueieiii ettt ettt ettt et e et e e e et 17
ConNECtion WatCh ProCEAUIES .........ciiiiiieeeiii et 19
8. Protocol Setup and SHULAOWN .......couuuiiiiiii et e et e e e e e ene e e 20
O. PrOCESSING IMESSA0ES ... eieitiie ettt ettt ettt ettt e et ettt e e et et et e e eanaas 22
O 1o TSSO UPPPPTTUPPPPN 24
11. Using ICElib Informational FUNCLIONS ............iiiiuiiieiiiie e 25
12, TCE MESSAOES ..cevtueeeetteee ettt e ettt ettt ettt e e et et e e e ettt e e e ettt e et ettt e et eatr e et e nt e e eena e aee 27
SENAING ICE MESSAgES .....ueieeiiiee ettt ettt ettt ettt et e e e aae e eennes 27
REBAING ICE MESSATES ... ceeiiii ettt ettt et e et e et e e e 30
I = g (o g o - 1o 11 o PP PPTTR PP 33
14. MUlti-Threading SUDPPOIT ....ceueee ettt ettt e e et e e e e et e e ettt e e e es e e eentanaaees 35
15. MiSCEIlanN@OUS FUNCLIONS ... .ccevuieiiiiie ettt e e e e e e e 36
16. ACKNOWIEOGEIMENLS ... .eeiteiiii ettt ettt e e et e e et eeere s 37
A. Authentication Utility FUNCHIONS ..........uiiiiiiiiiiii e 38
B. MIT-MAGIC-COOKIE-1 AUtNENEICALTION ...t 41




Chapter 1. Overview of ICE

There are numerous possible inter-client protocols, with many similarities and common needs - authenti-
cation, version negotiation, byte order negotiation, and so on. The Inter-Client Exchange (ICE) protocol
is intended to provide a framework for building such protocols, alowing them to make use of common
negotiation mechanisms and to be multiplexed over a single transport connection.




Chapter 2. The ICE Library - C
Language Interface to ICE

A client that wishes to utilize ICE must first register the protocols it understands with the ICE library.
Each protocol is dynamically assigned a major opcode ranging from 1-255 (two clients can use different
major opcodes for the same protocol). The next step for the client is either to open a connection with
another client or to wait for connections made by other clients. Authentication may be required. A client
can both initiate connections with other clients and be waiting for clients to connect to itself (a nested
session manager isan example). Once an | CE connection is established between the two clients, one of the
clients needsto initiate a Pr ot ocol Set up in order to "activate" a given protocol. Once the other client
accepts the Pr ot ocol Set up (once again, authentication may be required), the two clients are ready to
start passing messages specific to that protocol to each other. Multiple protocols may be active on asingle
I CE connection. Clients are responsible for notifying the ICE library when a protocol is no longer active
on an | CE connection, although ICE does not define how each subprotocol triggers a protocol shutdown.

ThelCE library utilizes callbacksto processincoming messages. Using callbacksallowsPr ot ocol Set -
up messages and authentication to happen behind the scenes. An additional benefit is that messages never
need to be buffered up by the library when the client blocks waiting for a particular message.




Chapter 3. Intended Audience

This document is intended primarily for implementors of protocol libraries layered on top of ICE. Typi-
cally, applications that wish to utilize ICE will make calls into individual protocol libraries rather than
directly make callsinto the ICE library. However, some applications will have to make someinitia calls
into the ICE library in order to accept |CE connections (for example, a session manager accepting con-
nections from clients). But in general, protocol libraries should be designed to hide the inner details of
I CE from applications.




Chapter 4. Header Files and Library
Name

The header file <X11/ICE/ICElib.h> defines al of the ICElib data structures and function prototypes.
| CEl i b. hincludesthe header file <X11/ICE/ICE.h>, which defines al of the | CElib constants. Protocol
libraries that need to read and write messages should include the header file <X11/ICE/ICEmsg.h>.

Applications should link against I CElib using -I1CE.




Chapter 5. Note on Prefixes

The following name prefixes are used in the library to distinguish between a client that initiates a Pr o-
t ocol Set up and aclient that responds with aPr ot ocol Repl y

| cePo - Ice Protocol Originator

» | cePa - Ice Protocol Acceptor




Chapter 6. Protocol Registration

In order for two clients to exchange messages for a given protocol, each side must register the protocol
with the ICE library. The purpose of registration isfor each side to obtain a major opcode for the protocol
and to provide callbacks for processing messages and handling authentication. There are two separate
registration functions:

* Oneto handle the side that doesa Pr ot ocol Set up
» Oneto handle the side that responds with aPr ot ocol Repl y

It is recommended that protocol registration occur before the two clients establish an ICE connection. If
protocol registration occurs after an ICE connection is created, there can be a brief interval of time in
which aPr ot ocol Set up isreceived, but the protocol is not registered. If it is not possible to register a
protocol before the creation of an ICE connection, proper precautions should be taken to avoid the above
race condition.

Thel ceRegi st er For Pr ot ocol Set up function should be called for the client that initiatesa Pr o-
t ocol Set up

i nt | ceRegi sterForProtocol Setup( *protocol _nane, *vendor, *rel ease,
version_count, *version_recs, auth_count, **auth_nanmes, *auth_procs,
io_error_proc);

protocol_name A string specifying the name of the protocol to register.

vendor A vendor string with semantics specified by the protocol.

release A release string with semantics specified by the protocol.
version_count The number of different versions of the protocol supported.
version_recs List of versions and associated callbacks.

auth_count The number of authentication methods supported.

auth_names Thelist of authentication methods supported.

auth_procs Thelist of authentication callbacks, one for each authentication method.
io_error_proc 10 error handler, or NULL.

| ceRegi st er For Pr ot ocol Set up returns the major opcode reserved or -1 if an error occurred. In
order to actually activate the protocol, the | cePr ot ocol Set up function needs to be called with this
major opcode. Oncethe protocol is activated, all messages for the protocol should be sent using this major
opcode.

A protocol library may support multiple versions of the same protocol. The version_recs argument spec-
ifiesalist of supported versions of the protocol, which are prioritized in decreasing order of preference.
Each version record consists of amajor and minor version of the protocol aswell as a callback to be used
for processing incoming messages.

typedef struct {
int major_version;




Protocol Registration

int minor_version;
IcePoProcessM sgProc process msg_proc;
} lcePoVersionRec;

The | cePoPr ocessMsgPr oc callback is responsible for processing the set of messages that can be
received by the client that initiated the Pr ot ocol Set up For further information, see Callbacksfor Pro-
cessing Messages

Authentication may be required before the protocol can become active. The protocol library must register
the authentication methodsthat it supportswith the CE library. The auth_namesand auth_procsarguments
are alist of authentication names and callbacks that are prioritized in decreasing order of preference. For
information on the | cePoAut hPr oc callback, see Authentication Methods

The 1 cel CErrorProc calback isinvoked if the ICE connection unexpectedly breaks. Y ou should
passNULL forio_error_proc if not interested in being notified. For further information, Error Handling

The | ceRegi st er For Prot ocol Repl y function should be called for the client that responds to a
Pr ot ocol Set up withaPr ot ocol Repl y

Bool |ceRegi sterForProtocol Repl y( *protocol _nanme, *vendor, *release,
versi on_count, *version_recs, auth_count, **auth_nanes, *auth_procs,
host based_aut h_proc, prot ocol _setup_proc, protocol activate_ proc,
io_error_proc);

protocol_name A string specifying the name of the protocol to register.

vendor A vendor string with semantics specified by the protocol.

release A release string with semantics specified by the protocal.

version_count The number of different versions of the protocol supported.

version _recs List of versions and associated callbacks.

auth_count The number of authentication methods supported.

auth_names Thelist of authentication methods supported.

auth_procs The list of authentication callbacks, one for each authentication
method.

host_based_auth_proc Host based authentication callback.

protocol_setup_proc A callback to be invoked when authentication has succeeded for a
Pr ot ocol Set up but beforethe Pr ot ocol Repl y issent.

protocol_activate proc A callback to be invoked after the Pr ot ocol Repl y issent.

io_error_proc 10 error handler, or NULL.

| ceRegi st er For Pr ot ocol Repl y returnsthe major opcode reserved or -1 if an error occurred. The
major opcode should be used in all subsequent messages sent for this protocol.

A protocol library may support multiple versions of the same protocol. The version_recs argument spec-
ifiesalist of supported versions of the protocol, which are prioritized in decreasing order of preference.
Each version record consists of amajor and minor version of the protocol aswell as a callback to be used
for processing incoming messages.




Protocol Registration

typedef struct {

int major_version;

int minor_version;

I cePaProcessM sgProc process_msg_proc;
} lcePaVersionRec;

The | cePaPr ocessMsgPr oc callback is responsible for processing the set of messages that can be
received by the client that accepted the Pr ot ocol Set up For further information, see Callbacks for
Processing Messages

Authentication may be required before the protocol can become active. The protocol library must register
the authenti cation methodsthat it supportswith the ICE library. Theauth_namesand auth_procsarguments
are alist of authentication names and callbacks that are prioritized in decreasing order of preference. For
information on the | cePaAut hPr oc, See Authentication Methods

If authentication fails and the client attempting to initiate the Pr ot ocol Set up has not required authen-
tication, thel ceHost BasedAut hPr oc callback isinvoked with the host name of the originating client.
If the callback returns Tr ue the Pr ot ocol Set up will succeed, even though the original authentica-
tion failed. Note that authentication can effectively be disabled by registering an | ceHost BasedAu-
t hPr oc which always returns Tr ue If no host based authentication is allowed, you should pass NULL
for host_based_auth proc.

Bool Host BasedAut hProc( *host _nane);
protocol_name The host name of the client that sent the Pr ot ocol Set up

The host_name argument is a string of the form protocol/hostname, where protocal is one of {tcp, decnet,
local}.

Because Pr ot ocol Set up messages and authentication happen behind the scenesvia callbacks, the pro-
tocol library needs some way of being notified when the Pr ot ocol Set up has completed. This occurs
in two phases. In the first phase, the | cePr ot ocol Set upPr oc callback is invoked after authentica-
tion has successfully completed but before the ICE library sends a Pr ot ocol Repl y Any resources re-
quired for this protocol should be alocated at this time. If the | cePr ot ocol Set upPr oc returns a
successful status, the ICE library will send the Pr ot ocol Repl y and then invoke the | cePr ot oco-

| Acti vat ePr oc callback. Otherwise, an error will be sent to the other client in response to the Pr o-

t ocol Set up

Thel cePr ot ocol Acti vat ePr oc isanoptional callback and should beregistered only if the protocol
library intends to generate a message immediately following the Pr ot ocol Repl y You should pass
NULL for protocol_activate proc if not interested in this callback.

Status Protocol SetupProc( ice_conn, maj or _ver si on, nm nor _ver si on,
*vendor, *release, *client_data_ ret, **failure_reason_ret);

protocol_name The ICE connection object.

major_version The major version of the protocol.

minor_version The minor version of the protocaol.

vendor The vendor string registered by the protocol originator.
release The release string registered by the protocol originator.
client_data ret Client data to be set by callback.




Protocol Registration

failure reason ret Failure reason returned.

The pointer stored in the client_data ret argument will be passed to the | cePaPr ocessMsgPr oc call-
back whenever amessage has arrived for this protocol on the ICE connection.

The vendor and release strings should be freed with f r ee when they are no longer needed.

If afailure occurs, the | cePr ot ocol Set upPr oc should return a zero status as well as allocate and
return a failure reason string in failure reason ret. The ICE library will be responsible for freeing this
memory.

Thel cePr ot ocol Acti vat ePr oc callback is defined as follows:

voi d Protocol ActivateProc( ice_conn, client_data);
ice_conn The ICE connection object.

client_data Theclient datasetinthel cePr ot ocol Set upPr oc callback.

The | cel OError Proc callback isinvoked if thel CE connection unexpectedly breaks. Y ou should pass
NULL forio_error_proc if not interested in being notified. For further information, see Error Handling

Callbacks for Processing Messages

When an application detects that there is new datato read on an ICE connection (viasel ect it callsthe
| cePr ocessMessages function Processing MessagesWhen | cePr ocessMessages readsan ICE
message header with a major opcode other than zero (reserved for the ICE protocal), it needs to call a
function that will read the rest of the message, unpack it, and process it accordingly.

If the message arrives at the client that initiated the Pr ot ocol Set up thel cePoPr ocessMsgPr oc
callback isinvoked.

voi d PoProcessMsgProc( ice _conn, client_data, opcode, |ength, swap,
*reply wait, *reply ready ret);

ice_conn The ICE connection object.

client_data Client data associated with this protocol on the |CE connection.
opcode The minor opcode of the message.

length The length (in 8-byte units) of the message beyond the | CE header.
swap A flag that indicates if byte swapping is necessary.

reply wait Indicatesif the invoking client iswaiting for areply.

reply ready ret If setto Tr ue areply isready.

If the message arrives at the client that accepted the Pr ot ocol Set up thel cePaPr ocessMsgPr oc
callback isinvoked.

void | cePaProcessMsgProc( ice_conn, client _data, opcode, | engt h,
swap) ;
ice_conn The ICE connection object.




Protocol Registration

client_data Client data associated with this protocol on the |CE connection.
opcode The minor opcode of the message.

length Thelength (in 8-byte units) of the message beyond the | CE header.
swap A flag that indicates if byte swapping is necessary.

In order to read the message, both of these callbacks should use the macros defined for this purpose (see
Reading |ICE Messages.). Note that byte swapping may be necessary. As a convenience, the length field
in the ICE header will be swapped by ICElib if necessary.

In both of these callbacks, the client_data argument is a pointer to client data that was registered at Pr o-
t ocol Set up time. Inthecaseof | cePoPr ocessMsgPr oc theclient datawassetinthecall tol ce-
Pr ot ocol Set up Inthecaseof | cePaPr ocessMsgPr oc theclient datawas setinthel cePr ot o-
col Set upPr oc callback.

Thel cePoPr ocessMsgPr oc callback needsto check thereply wait argument. If reply_waitisNULL ,
the ICE library expects the function to pass the message to the client via a callback. For example, if thisis
a Session Management "Save Y oursel f" message, this function should notify the client of the "Save Y our-
self" viaacallback. The details of how such a callback would be defined are implementati on-dependent.

However, if reply_wait is not NULL , then the client is waiting for areply or an error for a message it
previously sent. Thereply wait isof typel ceRepl yWai t | nf o

typedef struct {

unsigned long sequence_of _request;
int major_opcode_of_request;

int minor_opcode_of request;
IcePointer reply;

} lceReplyWaitInfo;

| ceRepl yWai t | nf o containsthe major/minor opcodes and sequence number of the message for which
areply isbeing awaited. It also contains a pointer to the reply message to be filled in (the protocol library
should cast this | cePoi nt er to the appropriate reply type). In most cases, the reply will have some
fixed-size part, and the client waiting for the reply will have provided a pointer to a structure to hold this
fixed-size data. If thereis variable-length data, it would be expected that the | cePoPr ocessMsgPr oc
callback will have to allocate additional memory and store pointer(s) to that memory in the fixed-size
structure. If the entire dataiis variable length (for example., asingle variable-length string), then the client
waiting for the reply would probably just pass a pointer to fixed-size space to hold a pointer, and the | ce-
PoPr ocessMsgPr oc calback would allocate the storage and store the pointer. It is the responsibility
of the client receiving the reply to free any memory allocated on its behalf.

If reply_wait isnot NULL and | cePoPr ocessMsgPr oc has areply or error to return in response to
this reply_wait (that is, no callback was generated), then the reply_ready ret argument should be set to
Tr ue Notethat an error should only bereturned if it correspondsto the reply being waited for. Otherwise,
the | cePoPr ocessMsgPr oc should either handle the error internally or invoke an error handler for
itslibrary.

If reply_wait is NULL, then care must be taken not to store any value in reply_ready ret, because this
pointer may also be NULL.

Thel cePaPr ocessMsgPr oc callback, on the other hand, should always pass the message to the client
via a callback. For example, if thisis a Session Management "Interact Request” message, this function
should notify the client of the "Interact Request” via a callback.

10



Protocol Registration

The reason the | cePaPr ocessMsgPr oc callback does not have a reply wait, like |1 cePoPr o-
cessMsgPr oc does, ishecause aprocessthat is acting as aserver should never block for areply (infinite
blocking can occur if the connecting client does not act properly, denying access to other clients).

Authentication Methods

Asaready stated, a protocol library must register the authentication methods that it supports with the ICE
library. For each authentication method, there are two callbacks that may be registered:

» Oneto handle the side that initiatesa Pr ot ocol Set up
» Oneto handle the side that accepts or rejects this request

| cePoAut hPr oc isthecallback invoked for theclient that initiated the Pr ot ocol Set up Thiscallback
must be able to respond to the initial " Authentication Required" message or subseguent "Authentication
Next Phase" messages sent by the other client.

| cePoAut hSt at us | cePoAut hStatus ( ice_conn, client _data, opcode);

ice_conn The ICE connection object.
auth_state ptr A pointer to state for use by the authentication callback procedure.
clean_up If Tr ue authentication is over, and the function should clean up any state it

was maintaining. The last 6 arguments should be ignored.

swap If Tr ue the auth_data may have to be byte swapped (depending on its con-
tents).

auth_datalen The length (in bytes) of the authenticator data.

auth_data The data from the authenticator.

reply datalen ret Thelength (in bytes) of the reply data returned.

reply data ret The reply data returned.

error_string_ret If the authentication procedure encounters an error during authentication, it

should allocate and return an error string.

Authentication may require several phases, depending on the authentication method. Asaresult, thel ce-
PoAut hPr oc may be called more than once when authenticating a client, and some state will have to
be maintained between each invocation. At the start of each Pr ot ocol Set up *auth_state ptrisNULL,
and the function should initialize its state and set this pointer. In subsequent invocations of the callback,
the pointer should be used to get at any state previously stored by the callback.

If needed, the network ID of the client accepting the Pr ot ocol Set up can be obtained by calling the
| ceConnecti onStri ng function.

ICElib will be responsible for freeing the reply _data ret and error_string_ret pointerswithf r ee

The auth_data pointer may point to a volatile block of memory. If the data must be kept beyond this
invocation of the callback, be sure to make a copy of it.

Thel cePoAut hPr oc should return one of four values:

» | cePoAut hHaveRepl y - areply isavailable.

11



Protocol Registration

e | cePoAut hRej ect ed - authentication rejected.

* | cePoAut hFai | ed - authentication failed.

» | cePoAut hDoneC eanup - done cleaning up.

| cePaAut hPr oc isthe callback invoked for the client that received the Pr ot ocol Set up

| cePoAut hSt atus PoAut hStatus ( ice_conn, *auth_state ptr, swap,
aut h_dat al en, aut h_dat a, *reply_datal en_ret, *reply _data_ ret,
**error_string_ret);

ice_conn The ICE connection object.

auth_state ptr A pointer to state for use by the authentication callback procedure.

swap If Tr ue auth_data may have to be byte swapped (depending on its contents).
auth_datalen Thelength (in bytes) of the protocol originator authentication data.
auth_data The authentication data from the protocol originator.

reply datalen_ret The length of the authentication data returned.

reply data ret The authentication data returned.

error_string_ret If authentication is rejected or fails, an error string is returned.

Authentication may require several phases, depending on the authentication method. As a result, the
| cePaAut hPr oc may be called more than once when authenticating a client, and some state will have
to be maintained between each invocation. At the start of each Pr ot ocol Set up auth_datalen is zero,
*auth_state ptr is NULL, and the function should initialize its state and set this pointer. In subsequent
invocations of the callback, the pointer should be used to get at any state previously stored by the callback.

If needed, the network 1D of the client accepting the Pr ot ocol Set up can be obtained by calling the
| ceConnecti onSt ri ng function.

The auth_data pointer may point to a volatile block of memory. If the data must be kept beyond this
invocation of the callback, be sure to make a copy of it.

ICElib will be responsible for transmitting and freeing the reply_data ret and error_string_ret pointers
withfree

The | cePaAut hPr oc should return one of four values:

e | cePaAut hCont i nue - continue (or start) authentication.
» | cePaAut hAccept ed - authentication accepted.

» | cePaAut hRej ect ed - authentication rejected.

* | cePaAut hFai | ed - authentication failed.

12



Chapter 7. ICE Connections

In order for two clients to establish an ICE connection, one client has to be waiting for connections, and
the other client hasto initiate the connection. Most clientswill initiate connections, so we discussthat first.

Opening an ICE Connection

To open an | CE connection with another client (that is, waiting for connections), usel ceQpenConnec-

tion
| ceConn | ceCpenConnecti on( *network_ids |ist, cont ext,
nust _aut henti cat e, maj or _opcode_check, error _| ength,

*error_string ret);

network_ids_list Specifies the network 1D(s) of the other client.

context A pointer to an opague object or NULL. Used to determine if an ICE con-
nection can be shared (see below).

must_authenticate If Tr ue the other client may not bypass authentication.

major_opcode_check Used to force a new | CE connection to be created (see below).

error_length Length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The error_string_ret argu-
ment points to user supplied memory. No more than error_length bytes are
used.

| ceOpenConnect i on returns an opagque ICE connection object if it succeeds; otherwise, it returns
NULL.

The network_ids_list argument contains a list of network IDs separated by commas. An attempt will be
made to use the first network ID. If that fails, an attempt will be made using the second network ID, and
so on. Each network 1D has the following format:

tcp/<hostname>:<portnumber>  or
decnet/<hostname>::<objname> or
local/<hostname>:<path>

Most protocol libraries will have some sort of open function that should internally make a call into
| ceOpenConnecti on Whenl ceOpenConnect i on iscalled, it may be possibleto use apreviously
opened ICE connection (if the target client is the same). However, there are cases in which shared ICE
connections are not desired.

The context argument is used to determine if an ICE connection can be shared. If context is NULL, then
the caller is aways willing to share the connection. If context is not NULL, then the caller is not willing
to use a previously opened | CE connection that has a different non-NULL context associated with it.

In addition, if major_opcode check contains a nonzero major opcode value, a previously created ICE
connection will be used only if the major opcode is not active on the connection. This can be used to force
multiple ICE connections between two clients for the same protocol.

13



I CE Connections

Any authentication requirements are handled internally by the ICE library. The method by which the
authentication data is obtained is implementati on-dependent. !

After | ceQpenConnecti on is caled, the client is ready to send a Pr ot ocol Set up (provided
that | ceRegi st er For Pr ot ocol Set up was called) or receive a Pr ot ocol Set up (provided that
| ceRegi st er For Pr ot ocol Repl y wascalled).

Listening for ICE Connections

Clients wishing to accept | CE connections must first call | ceLi st enFor Connecti ons orl celLi s-
t enFor Wl | KnownConnect i ons so that they can listen for connections. A list of opaque "listen"
objects are returned, one for each type of transport method that is available (for example, Unix Domain,
TCP, DECnet, and so on).

Normally clients will let ICElib allocate an available name in each transport and return listen objects.
Such aclient will thenusel ceConposeNet wor ki dLi st to extract the chosen names and make them
available to other clients for opening the connection. In certain cases it may be necessary for aclient to
listen for connections on pre-arranged transport object names. Such aclient may usel ceLi st enFor -
Wl | KnownConnect i ons to specify the names for the listen objects.

St at us | ceLi st enFor Connecti ons( *count _ret, **|jisten_objs _ret,
error _length, *error_string ret);

count_ret Returns the number of listen objects created.

listen_objs ret Returns alist of pointers to opague listen objects.

error_length Thelength of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The error_string_ret points to

user supplied memory. No more than error_|length bytes are used.
Thereturnvalue of | ceLi st enFor Connect i ons iszero for failure and a positive value for success.

St at us | ceLi st enFor V&l | KnownConnect i ons( *port id, *count _ret,
**|isten_objs ret, error_length, *error_string_ ret);

port_id Specifiesthe port identification for the address(es) to be opened. The value must
not contain the slash (/"> or comma (".") character; thse are reserved for future
use.

count_ret Returns the number of listen objects created.

listen_objs ret Returns alist of pointers to opague listen objects.

listen_objs ret Returns alist of pointers to opague listen objects.

error_length Thelength of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The error_string_ret points to

user supplied memory. No more than error_|length bytes are used.

| ceLi st enFor V&l | KnownConnect i ons constructs a list of network IDs by prepending each
known transport to port_id and then attemptsto create listen objects for the result. Port_id isthe portnum-

The X Consortium's ICElib implementation uses an .|CEauthority file (see Appendix A).

14



I CE Connections

ber, objname, or path portion of the ICE network ID. If alisten object for a particular network ID cannot
be created the network 1D isignored. If no listen objectsare created | ceLi st enFor Wl | KnownCon-
nect i ons returnsfailure.

Thereturnvalueof | ceLi st enFor Wl | KnownConnect i ons iszerofor failureand apositive value
for success.

To close and free the listen abjects, use| ceFr eeLi st enhj s
voi d | ceFreelListenObjs( count, *listen_objs);
count The number of listen objects.

listen_objs The listen objects.

To detect a new connection on a listen object, use sel ect on the descriptor associated with the listen
object.

To obtain the descriptor, use | ceGet Li st enConnect i onNunber
i nt |ceCetlListenConnectionNunber( *listen_objs);
listen_obj The listen objects.

To obtain the network ID string associated with a listen object, use | ceGet Li st enConnect i on-
String

char | ceCetListenConnectionString( |isten_obj);
listen_obj The listen objects.

A network ID has the following format:

tcp/<hostname>:<portnumber>  or
decnet/<hosthame>::<objname> or
local/<hostname>:<path>

To compose a string containing a list of network 1Ds separated by commas (the format recognized by
I ceOpenConnecti on usel ceConposeNet wor ki dLi st

char | ceConposeNet wor kI dLi st( count, *listen_objs);
count The number of listen objects.

listen_objs The listen objects.

Host Based Authentication for ICE Connec-
tions

If authentication fails when a client attempts to open an | CE connection and the initiating client has not
required authentication, a host based authentication procedure may be invoked to provide a last chance
for the client to connect. Each listen object has such a callback associated with it, and this callback is set
usingthel ceSet Host BasedAut hPr oc function.

15



I CE Connections

voi d | ceSet Host BasedAut hProc( |isten_obj, host_based_auth_proc);
| ceListenObj The listen object.
host_based_auth_proc The host based authentication procedure.

By default, each listen object has no host based authentication procedure associated with it. Passing NUL L
for host_based_auth_proc turns off host based authentication if it was previously set.

Bool Host BasedAut hProc( *host _nane);
host_name The host name of the client that tried to open an | CE connection.

The host_name argument isastring in the form protocol/ hostname, where protocol isone of { tcp, decnet,
local}.

If | ceHost BasedAut hPr oc returns Tr ue access will be granted, even though the original authenti-
cation failed. Note that authentication can effectively be disabled by registering an | ceHost BasedAu-
t hPr oc which alwaysreturns Tr ue

Host based authentication is also allowed at Pr ot ocol Set up time. The callback is specified in the
| ceRegi st er For Pr ot ocol Repl y function (see Protocol Registration).

Accepting ICE Connections

After a connection attempt is detected on a listen object returned by | ceLi st enFor Connect i ons
you should call | ceAccept Connect i on Thisreturns a new opague | CE connection object.

| ceConn | ceAccept Connection( |isten_obj, *status ret);
listen_obj The listen object on which a new connection was detected.
status ret Return status information.

The status_ret argument is set to one of the following values:

» | ceAccept Success - the accept operation succeeded, and the function returns a new connection
object.

» | ceAccept Fai | ur e - the accept operation failed, and the function returns NULL.
» | ceAccept BadMal | oc - amemory allocation failed, and the function returns NULL.

In general, to detect new connections, you should call sel ect on the file descriptors associated with the
listen objects. When a new connection is detected, the | ceAccept Connect i on function should be
caled. | ceAccept Connect i on may return a new ICE connection that is in a pending state. Thisis
because before the connection can become valid, authentication may be necessary. Becausethe I CE library
cannot block and wait for the connection to become valid (infinite blocking can occur if the connecting
client does not act properly), the application must wait for the connection status to become valid.

The following pseudo-code demonstrates how connections are accepted:

new_i ce_conn = | ceAccept Connection (listen_obj, &accept_status);
if (accept_status != |ceAccept Success)

{

close the file descriptor and return

16



I CE Connections

}

status = IceConnectionStatus (new_ice_conn);
time_start = time_now,

whil e (status == | ceConnect Pendi ng)

{

select() on {new_.ice_conn, all open connections}

for (each ice_conn in the list of open connections)
if (data ready on ice_conn)

{
status = | ceProcessMessages (ice_conn, NULL, NULL);
if (status == |ceProcessMessagesl CError)
| ceCl oseConnection(ice_conn);
}
if data ready on new_i ce_conn
{
/*
* | ceProcessMessages is called until the connection
* is non-pending. Doing so handles the connection
* setup request and any authentication requirenents.
*/
| ceProcessMessages ( new_i ce_conn, NULL, NULL);
status = I ceConnectionStatus (new_ice_conn);
}
el se
{
if (time_now - time_start > MAX_WAIT_TI MVE)
status = | ceConnect Rej ect ed,;
}
}
if (status == | ceConnect Accept ed)
{
Add new_ice_conn to the Iist of open connections
}
el se
{
| ced oseConnecti on
new_i ce_conn
}

After | ceAccept Connecti on is called and the connection has been validated, the client is ready to
receive a Pr ot ocol Set up (provided that | ceRegi st er For Pr ot ocol Repl y was called) or send
aPr ot ocol Set up (provided that | ceRegi st er For Pr ot ocol Set up was called).

Closing ICE Connections

To close an ICE connection created with | ceQpenConnecti on or | ceAccept Connecti on use
| ceC oseConnection

| ceCl oseStat us | ced oseConnection( ice_conn);

17



I CE Connections

ice_conn The ICE connection to close.

To actually close an ICE connection, the following conditions must be met:

The open reference count must have reached zero on this ICE connection. When | ceOpenConnec-

ti oniscaled, it triestouseapreviousy opened | CE connection. If it isableto use an existing connec-
tion, it increments the open reference count on the connection by one. So, to close an | CE connection,
each cal to | ceCpenConnect i on must be matched with acall to | ceCl oseConnecti on The
connection can be closed only onthelast call tol ceCl oseConnect i on

The active protocol count must have reached zero. Each time a Pr ot ocol Set up succeeds on the
connection, the active protocol count is incremented by one. When the client no longer expects to use
the protocol on the connection, thel cePr ot ocol Shut down function should be called, which decre-
ments the active protocol count by one (see Protocol Setup and Shutdown).

If shutdown negotiation is enabled on the connection, the client on the other side of the ICE connection
must agree to have the connection closed.

| ceCl oseConnect i on returns one of the following values:

I ceCl osedNow - the ICE connection was closed at this time. The watch procedures were invoked
and the connection was freed.

| ceC 0sedASAP - an 10 error had occurred on the connection, but | ceCl oseConnecti on is
being called within a nested | cePr ocessMessages The watch procedures have been invoked at
this time, but the connection will be freed as soon as possible (when the nesting level reaches zero and
| cePr ocessMessages returnsastatus of | cePr ocessMessagesConnecti onCl osed

I ceConnect i onl nUse - the connection was not closed at thistime, becauseit is being used by other
active protocols.

| ceSt art edShut downNegot i at i on - the connection was not closed at this time and shutdown
negotiation started with the client on the other side of the ICE connection. When the connection is
actually closed, | cePr ocessMessages will return astatusof | cePr ocessMessagesConnec-
tionCd osed

When it isknown that the client on the other side of the | CE connection hasterminated the connection with-
out initiating shutdown negotiation, the | ceSet Shut downNegot i at i on function should be called
to turn off shutdown negotiation. This will prevent | ceCl oseConnect i on from writing to a broken
connection.

voi d | ceSet Shut downNegoti ati on( ice_conn, negotiate);

ice_conn A valid ICE connection object.

negotiate If Fal se shutdown negotiating will be turned off.

To check the shutdown negotiation status of an ICE connection, use | ceCheckShut downNegot i a-
tion

Bool 1 ceCheckShut downNegoti ati on( ice_conn);

ice_conn A valid ICE connection object.

| ceCheckShut downNegot i at i on returnsTr ue if shutdown negotiation will take place on the con-
nection; otherwise, it returns Fal se Negotiation ison by default for a connection. It can only be changed
with the | ceSet Shut downNegot i at i on function.

18



I CE Connections

Connection Watch Procedures

To add a watch procedure that will be called each time ICElib opens a new connection vial ceOpen-
Connection or | ceAccept Connecti on or closes aconnection vial ceCl oseConnect i on use
| ceAddConnect i onWat ch

St at us | ceAddConnecti onVat ch( watch_proc, client_data);

watch_proc The watch procedure to invoke when ICElib opens or closes a connection.
client_data This pointer will be passed to the watch procedure.

Thereturn value of | ceAddConnect i onWat ch is zero for failure, and a positive value for success.

Note that several callsto| ceOQpenConnect i on might share the same | CE connection. In such a case,
the watch procedure is only invoked when the connection is first created (after authentication succeeds).
Similarly, because connections might be shared, the watch procedure is called only if | ceCl oseCon-
nect i on actually closes the connection (right before the IceConn is freed).

The watch procedures are very useful for applications that need to add a file descriptor to a select mask
when anew connectionis created and remove thefile descriptor when the connection isdestroyed. Because
connections are shared, knowing when to add and remove the file descriptor from the select mask would
be difficult without the watch procedures.

Multiple watch procedures may be registered with the | CE library. No assumptions should be made about
their order of invocation.

If one or more |CE connections were already created by the ICE library at the time the watch procedure
is registered, the watch procedure will instantly be invoked for each of these ICE connections (with the
opening argument set to Tr ue

The watch procedureis of typel ceWat chPr oc
void WatchProc( ice_conn, «client_data, opening, *watch_data);

ice_conn The opened or closed ICE connection. Call | ceConnect i onNunber to get thefile
descriptor associated with this connection.

client_data Client data specified in the call to | ceAddConnect i onWat ch
opening If Tr ue the connection is being opened. If Fal se the connection is being closed.
watch_data Can be used to save a pointer to client data.

If opening is Tr ue the client should set the *watch_data pointer to any datait may need to save until the
connection is closed and the watch procedure is invoked again with opening set to Fal se

To remove awatch procedure, use | ceRenoveConnect i onWat ch
voi d | ceRenobveConnecti onWatch( watch_proc, client _data);
watch_proc The watch procedure that was passed to | ceAddConnect i onWat ch

client_data The client_data pointer that was passed to | ceAddConnect i onWat ch

19



Chapter 8. Protocol Setup and
Shutdown

To activate a protocol on agiven |CE connection, use | cePr ot ocol Set up

| cePr ot ocol Set upSt at us | cePr ot ocol Set up( i ce_conn, ny_opcode,
client_data, must _aut henti cat e, *maj or _version_ret,
*m nor_version_ret, **yendor _ret, **rel ease_ret, error _| ength,

*error_string ret);

ice_conn A valid ICE connection object.

my_opcode The major opcode of the protocol to be set up, as returned by | ceRegi s-
t er For Pr ot ocol Set up

client_data The client data stored in this pointer will be passed to the | cePoPr o-
cessMsgPr oc calback.

must_authenticate If Tr ue the other client may not bypass authentication.

major_version_ret The major version of the protocol to be used is returned.

minor_version ret The minor version of the protocol to be used is returned.

vendor_ret The vendor string specified by the protocol acceptor.

release ret The release string specified by the protocol acceptor.

error_length Specifies the length of the error_string_ret argument passed in.

error_string_ret Returnsanull-terminated error message, if any. Theerror_string_ret argument

points to user supplied memory. No more than error_length bytes are used.
The vendor_ret and release _ret strings should be freed with f r ee when no longer needed.
| cePr ot ocol Set up returns one of the following values:

* | ceProt ocol Set upSuccess - the mgjor_version_ret, minor_version_ret, vendor_ret, release ret
are set.

» | ceProtocol Set upFai | ure or | ceProt ocol Set upl OError - check error_string_ret for
failure reason. The major_version_ret, minor_version_ret, vendor_ret, release ret are not set.

* I ceProtocol Al readyActi ve - this protocol is already active on this connection. The
major_version_ret, minor_version_ret, vendor_ret, release ret are not set.

To notify the ICE library when a given protocol will no longer be used on an ICE connection, use | ce-
Pr ot ocol Shut down

Status | ceProt ocol Shutdown( ice_conn, major_opcode);
ice_conn A valid I CE connection object.

major_opcode The major opcode of the protocol to shut down.

20



Protocol Setup and Shutdown

Thereturn value of | cePr ot ocol Shut down is zero for failure and a positive value for success.

Failure will occur if the magjor opcode was never registered OR the protocol of the major opcode was
never activated on the connection. By activated, we mean that a Pr ot ocol Set up succeeded on the
connection. Note that |CE does not define how each sub-protocol triggers a protocol shutdown.

21



Chapter 9. Processing Messages

To process incoming messages on an | CE connection, use|l cePr ocessMessages

| ceProcessMessagesSt atus | ceProcessMessages( ice_conn, *reply wait,
*reply ready ret);

ice_conn A valid ICE connection object.
reply wait Indicatesif areply isbeing waited for.
reply ready ret If set to Tr ue on return, areply isready.

| ceProcessMessages isused in two ways:

 Inthefirst, aclient may generate amessage and block by calling | cePr ocessMessages repeatedly
until it getsitsreply.

 In the second, a client calls | cePr ocessMessages with reply_wait set to NULL in response to
sel ect showing that thereis datato read on the | CE connection. The | CE library may process zero or
more complete messages. Note that messages that are not blocked for are always processed by invoking
callbacks.

| ceRepl yWai t | nf o containsthe major/minor opcodes and sequence number of the message for which
areply isbeing awaited. It also contains a pointer to the reply message to befilled in (the protocol library
should cast this | cePoi nt er to the appropriate reply type). In most cases, the reply will have some
fixed-size part, and the client waiting for the reply will have provided a pointer to a structure to hold this
fixed-size data. If thereis variable-length data, it would be expected that the | cePoPr ocessMsgPr oc
callback will have to allocate additional memory and store pointer(s) to that memory in the fixed-size
structure. If the entire datais variable length (for example, a single variable-length string), then the client
waiting for the reply would probably just pass a pointer to fixed-size space to hold a pointer, and the | ce-
PoPr ocessMsgPr oc calback would allocate the storage and store the pointer. It is the responsibility
of the client receiving the reply to free up any memory allocated on its behalf.

typedef struct {
unsi gned | ong sequence_of request;
i nt maj or_opcode_of request;
i nt mnor_opcode_of request;
| cePoi nter reply;
} I ceRepl yWi tl nfo;

If reply_waitisnot NULL and | cePr ocessMessages hasareply or error to return in response to this
reply_wait (that is, no callback was generated), then the reply _ready ret argument will be set to Tr ue

If reply_wait is NULL, then the caller may also pass NULL for reply ready ret and be guaranteed that
no value will be stored in this pointer.

| cePr ocessMessages returns one of the following values:
e | ceProcessMessagesSuccess - no error occurred.

e | ceProcessMessagesl| CError - an 1O error occurred, and the caller must explicitly close the
connection by calling | ceCl oseConnecti on

22



Processing Messages

e | ceProcessMessagesConnect i onC osed - thel CE connection has been closed (closing of the
connection was deferred because of shutdown negotiation, or because the | cePr ocessMessages
nesting level was not zero). Do not attempt to access the ICE connection at this point, since it has been

freed.

23



Chapter 10. Ping

To send a"Ping" message to the client on the other side of the ICE connection, usel cePi ng

Status lcePing( ice _conn, ping reply proc, client_data);

ice_conn A valid ICE connection object.
ping_reply proc The callback to invoke when the Ping reply arrives.
client_data This pointer will be passed tothe | cePi ngRepl yPr oc callback.

| cePi ng returns zero for failure and a positive value for success.

When| cePr ocessMessages processesthe Ping reply, it will invokethel cePi ngRepl yPr oc cal-
back.

voi d PingReplyProc( ice _conn, client _data);
ice_conn A valid ICE connection object.

client_data The client data specified inthecall to| cePi ng

24



Chapter 11. Using ICElib Informational
Functions

| ceConnect St at us | ceConnecti onStatus( ice_conn);
| ceConnecti onSt at us returnsthe status of an ICE connection. The possible return values are:

* | ceConnect Pendi ng - the connection is not valid yet (that is, authentication is taking place). This
isonly relevant to connections created by | ceAccept Connecti on

» | ceConnect Accept ed - the connection has been accepted. This is only relevant to connections
created by | ceAccept Connecti on

» | ceConnect Rej ect ed - the connection had been rejected (that is, authentication failed). Thisis
only relevant to connections created by | ceAccept Connecti on

e | ceConnect | CError -anlO error has occurred on the connection.
char *lceVendor( ice_conn);

| ceVendor returnsthe ICE library vendor identification for the other side of the connection. The string
should be freed with acall to f r ee when no longer needed.

char *IceRel ease( ice_conn);

| ceRel ease returnsthe release identification of the ICE library on the other side of the connection. The
string should be freed with acall to f r ee when no longer needed.

int 1ceProtocol Version( ice_conn);

| cePr ot ocol Ver si on returns the major version of the |CE protocol on this connection.
int 1ceProtocol Revision( ice_conn);

| cePr ot ocol Revi si on returns the minor version of the ICE protocol on this connection.
int 1ceConnectionNunber( ice_conn);

| ceConnect i onNunber returns the file descriptor of this |CE connection.

char *lceConnectionString( ice_conn);

| ceConnecti onSt ri ng returnsthe network 1D of the client that accepted this connection. The string
should be freed with acall to f r ee when no longer needed.

unsi gned |l ong | celLast Sent SequenceNunber( ice_conn);

| ceLast Sent SequenceNunber returns the sequence number of the last message sent on this ICE
connection.

unsi gned |l ong | celLast Recei vedSequenceNunber( ice_conn);

| ceLast Recei vedSequenceNunber returns the sequence number of the last message received on
this ICE connection.

25



Using ICElib Informational Functions

Bool | ceSwappi ng( ice_conn);

| ceSwappi ng returns Tr ue if byte swapping is necessary when reading messages on the ICE con-
nection.

| cePointer |ceCetContext( ice_conn);

| ceGet Cont ext returnsthe context associated with aconnection created by | ceQpenConnect i on

26



Chapter 12. ICE Messages

All ICE messages have a standard 8-byte header. The | CElib macros that read and write messagesrely on
the following naming convention for message headers:

CARD8 maj or _opcode;
CARD8 mi nor _opcode;
CARD8 dat a[ 2] ;

CARD32 | ength B32;

The 3rd and 4th bytes of the message header can be used as needed. The length field is specified in units
of 8 bytes.

Sending ICE Messages

The | CE library maintains an output buffer used for generating messages. Protocol librarieslayered on top
of ICE may choose to batch messages together and flush the output buffer at appropriate times.

If an 1O error has occurred on an |CE connection, all write operations will be ignored. For further infor-
mation, see Error Handling.

To get the size of the ICE output buffer, use | ceGet Qut Buf Si ze

int 1ceGetQutBufSize( ice_conn);

ice_conn A valid ICE connection object.

To flush the ICE output buffer, use | ceFl ush

int 1ceFlush( ice_conn);

ice_conn A valid ICE connection object.

Note that the output buffer may be implicitly flushed if there isinsufficient space to generate a message.
The following macros can be used to generate | CE messages:

| ceGet Header ( i ce_conn, maj or _opcode, m nor _opcode, header _si ze,

*pnBsg) ;

ice_conn A valid ICE connection object.
major_opcode The major opcode of the message.
minor_opcode The minor opcode of the message.
header_size The size of the message header (in bytes).

<C_data_type> The actual C datatype of the message header.

pmsg The message header pointer. After thismacro is called, the library can store datain
the message header.

27



ICE Messages

| ceGet Header isused to set up a message header on an | CE connection. It sets the major and minor
opcodes of the message, and initializes the message's length to the length of the header. If additional
variable length data follows, the message's length field should be updated.

| ceGet Header Ext r a( i ce_conn, maj or _opcode, nm nor _opcode,
header _size, extra, *pnmsg, *pdata);

ice_conn A valid ICE connection object.

major_opcode The major opcode of the message.

minor_opcode The minor opcode of the message.

header_size The size of the message header (in bytes).

extra The size of the extra data beyond the header (in 8-byte units).

<C_data_type> The actual C datatype of the message header.

pmsg The message header pointer. After thismacro is called, the library can store datain
the message header.
pdata Returns a pointer to the | CE output buffer that pointsimmediately after the message

header. The variable length data should be stored here. If there was not enough room
in the |CE output buffer, pdatais set to NULL.

| ceCet Header Ext r a is used to generate a message with a fixed (and relatively small) amount of
variable length data. The complete message must fit in the | CE output buffer.

| ceSi npl eMessage( ice_conn, najor_opcode, m nor_opcode);
ice_conn A valid ICE connection object.

major_opcode The major opcode of the message.

minor_opcode The minor opcode of the message.

| ceSi npl eMessage isused to generate amessage that isidentical in size to the | CE header message,
and has no additional data.

| ceErr or Header ( i ce_conn, of f endi ng_maj or _opcode,
of f endi ng_m nor _opcode, of f endi ng_sequence_num severity,
error_class, data_length);

ice_conn A valid ICE connection object.

offending_major_opcode The major opcode of the protocol in which an error was detected.
offending_minor_opcode The minor opcode of the protocal in which an error was detected.
offending_sequence_num The sequence number of the message that caused the error.

severity | ceCanCont i nue | ceFat al ToProt ocol or | ceFat al To-

Connecti on
error_class The error class.

data length Length of data (in 8-byte units) to be written after the header.

28



ICE Messages

| ceErr or Header setsup an error message header.

Note that the two clients connected by | CE may be using different major opcodes for agiven protocol. The
offending_major_opcode passed to this macro is the major opcode of the protocol for the client sending
the error message.

Generic errors, which are common to all protocols, have classes in the range 0x8000..0xFFFF. See the
Inter-Client Exchange Protocol standard for more details.

IceBadMinor 0x8000
|ceBadState 0x8001
IceBadL ength 0x8002
IceBadValue 0x8003

Per-protocol errors have classes in the range 0x0000-0x 7fff.

To write datato an ICE connection, usethe | ceW i t eDat a macro. If the datafitsinto the | CE output
buffer, it is copied there. Otherwise, the | CE output buffer is flushed and the dataiis directly sent.

Thismacro isused in conjunction with | ceGet Header and | ceError Header
IceWiteData( ice_conn, bytes, *data);
ice_conn A valid ICE connection object.

bytes The number of bytesto write.

data The data to write.

To write data as 16-bit quantities, use | ceW it eDat al6
lceWiteDatal6( ice_conn, bytes, *data);
ice_conn A valid ICE connection object.

bytes The number of bytesto write.

data The data to write.

To write data as 32-bit quantities, use | ceW i t eDat a32
lceWiteData32( ice_conn, bytes, *data);
ice_conn A valid ICE connection object.

bytes The number of bytesto write.

data The datato write.

To write data as 32-bit quantities, use | ceW i t eDat a32

To bypass copying data to the ICE output buffer, use | ceSendDat a to directly send data over the
network connection. If necessary, the ICE output buffer isfirst flushed.

| ceSendDat a( i ce_conn, bytes, *data);

ice_conn A valid I CE connection object.

29



ICE Messages

bytes The number of bytes to send.

data The datato send.

To force 32-bit or 64-bit alignment, use | ceW i t ePad A maximum of 7 pad bytes can be specified.
IceWitePad( ice_conn, bytes, *data);

ice_conn A valid ICE connection object.

bytes The number of bytes to write.

data The number of pad bytes to write.

Reading ICE Messages

The I CE library maintains an input buffer used for reading messages. If the ICE library choosesto perform
nonblocking reads (this is implementation-dependent), then for every read operation that it makes, zero
or more complete messages may be read into the input buffer. Asaresult, for all of the macros described
in this section that read messages, an actual read operation will occur on the connection only if the data
isnot already present in the input buffer.

To get the size of the ICE input buffer, use | ceGet | nBuf Si ze
int |ceGetlnBufSize( ice_conn);
ice_conn A valid ICE connection object.

When reading messages, care must be taken to check for 10 errors. If any 10 error occurs in reading any
part of a message, the message should be thrown out. After using any of the macros described below
for reading messages, the | ceVal i dl O macro can be used to check if an 10 error occurred on the
connection. After an 10 error has occurred on an | CE connection, all read operations will be ignored. For
further information, see Error Handling.

Bool IceValidl Q( ice_conn);

ice_conn A valid ICE connection object.

The following macros can be used to read | CE messages.

| ceReadSi npl eMessage( i ce_conn, *pneQ);
ice_conn A valid ICE connection object.
<C_data_type> The actual C datatype of the message header.
pmsg This pointer is set to the message header.

| ceReadSi npl eMessage is used for messages that are identical in size to the 8-byte ICE header,
but use the spare 2 bytes in the header to encode additional data. Note that the ICE library aways reads
in these first 8 bytes, so it can obtain the major opcode of the message. | ceReadSi npl eMessage
simply returns a pointer to these 8 bytes; it does not actually read any datainto the input buffer.

For amessage with variable length data, there are two ways of reading the message. One method involves
reading the complete message in one pass using | ceReadConpl et eMessage The second method
involves reading the message header (note that thismay belarger than the 8-byte | CE header), then reading
the variable length datain chunks (see | ceReadMessageHeader and | ceReadDat a

30



ICE Messages

| ceReadCompl et eMessage( ice_conn, header_size, *pnsg, *pdata);
ice_conn A valid ICE connection object.

header_size The size of the message header (in bytes).

<C _data_type> The actual C datatype of the message header.

pmsg This pointer is set to the message header.

pdata This pointer is set to the variable length data of the message.

If the ICE input buffer has sufficient space, | ceReadConpl et eMessage will read the complete
message into the ICE input buffer. Otherwise, a buffer will be allocated to hold the variable length data.
After the call, the pdata argument should be checked against NULL to make sure that there was sufficient
memory to allocate the buffer.

After calling | ceReadConpl et eMessage and processing the message, | ceDi sposeCont
pl et eMessage should be called.

| ceDi sposeConpl et eMessage( ice_conn, *pdata);
ice_conn A valid ICE connection object.
pdata The pointer to the variable length datareturnedin | ceReadConpl et eMessage

If abuffer had to be allocated to hold the variable length data (becauseit did not fit in the ICE input buffer),
it isfreed here by ICElib.

| ceReadMessageHeader ( i ce_conn, header_size, *pnsg);
ice_conn A valid ICE connection object.

header_size The size of the message header (in bytes).

<C _data_type> The actual C data type of the message header.

pmsg This pointer is set to the message header.

| ceReadMessageHeader readsjust the message header. The rest of the data should be read with the
| ceReadDat a family of macros. This method of reading a message should be used when the variable
length data must be read in chunks.

To read data directly into auser supplied buffer, use | ceReadDat a

| ceReadDat a( ice_conn, bytes, *pdata);

ice_conn A valid ICE connection object.

bytes The number of bytesto read.

pdata The dataisread into this user supplied buffer.

To read data as 16-bit quantities, use | ceReadDat al6

| ceReadDat al6( ice_conn, swap, bytes, *pdata);

ice_conn A valid ICE connection object.

31



ICE Messages

swap If Tr ue, thevalueswill be byte swapped.
bytes The number of bytesto read.
pdata The dataisread into this user supplied buffer.

To read data as 32-bit quantities, use | ceReadDat a32
| ceReadDat a32( ice_conn, swap, bytes, *pdata);

ice_conn A valid ICE connection object.

swap If Tr ue, thevalueswill be byte swapped.
bytes The number of bytesto read.
pdata The dataisread into this user supplied buffer.

To force 32-bit or 64-hit alignment, use | ceReadPad A maximum of 7 pad bytes can be specified.
| ceReadPad( ice _conn, bytes);
ice_conn A valid ICE connection object.

bytes The number of pad bytes.

32



Chapter 13. Error Handling

There are two default error handlersin ICElib:
» Oneto handletypically fatal conditions (for example, a connection dying because a machine crashed)
» Oneto handle | CE-specific protocol errors

These error handlers can be changed to user-supplied routines if you prefer your own error handling and
can be changed as often asyou like.

To set the ICE error handler, use | ceSet Err or Handl er

| ceSet ErrorHandl er( ice_conn, bytes);

handler The ICE error handler. Y ou should pass NULL to restore the default handler.
| ceSet Err or Handl er returnsthe previous error handler.

TheICE error handler isinvoked when an unexpected | CE protocol error (major opcode 0) is encountered.
The action of the default handler isto print an explanatory messageto st der r and if the severity isfatal,
cal exi t with a nonzero value. If exiting is undesirable, the application should register its own error
handler.

Note that errorsin other protocol domains should be handled by their respective libraries (these libraries
should have their own error handlers).

An ICE error handler hasthetypeof | ceEr r or Handl er

void IceErrorHandler( ice_conn, swap, of f endi ng_m nor _opcode,
of fendi ng_sequence_num error_class, severity, values);

handler The ICE connection object.

swap A flag that indicates if the values need byte swapping.
offending_minor_opcode The ICE minor opcode of the offending message.
offending_sequence_num The sequence number of the offending message.

error_class The error class of the offending message.

severity | ceCanConti nue | ceFat al ToProt ocol or | ceFat al To-

Connecti on
values Any additional error values specific to the minor opcode and class.

The following error classes are defined at the ICE level:

| ceBadM nor

| ceBadSt at e
| ceBadLengt h
| ceBadVal ue
| ceBadMaj or

| ceNoAut h

33



Error Handling

| ceNoVer si on

| ceSet upFai | ed

| ceAut hRej ect ed

| ceAut hFai | ed

| cePr ot ocol Duplicate

| ceMaj or OpcodeDupl i cate
I ceUnknownPr ot ocol

For further information, see the Inter-Client Exchange Protocol standard.

To handle fatal 1/0 errors, use | ceSet | Cer r or Handl er

| cel CErrorHandl er IceSetl CerrorHandl er( handler);

handler The I/O error handler. Y ou should pass NULL to restore the default handler.
| ceSet | CErr or Handl er returnsthe previous 10 error handler.

AnICE I/O error handler hasthetypeof | cel OError Handl er

void I cel OerrorHandl er( ice_conn);

ice_conn The ICE connection object.

There are two ways of handling 10 errorsin ICElib:

 Inthefirst, the 1O error handler does whatever is necessary to respond to the O error and then returns,
but it does not call | ceC oseConnect i on The ICE connection is given a "bad 10" status, and al
future reads and writesto the connection areignored. Thenexttimel cePr ocessMessages iscalled
it will return a status of | cePr ocessMessages| OErr or At that time, the application should call
| ceCl oseConnecti on

* In the second, the 10 error handler does call | ceCl oseConnect i on and then uses the | ongj np
call to get back to the application's main event loop. The set j np and | ongj np calls may not work
properly on all platforms, and special care must be taken to avoid memory leaks. Therefore, this second
model isless desirable.

Before the application 1/O error handler isinvoked, protocol librariesthat wereinterested in being notified
of 1/O errors will have their | cel OErr or Pr oc handlers invoked. This handler is set up in the pro-
tocol registration functions (see | ceRegi st er For Pr ot ocol Set up and | ceRegi st er For Pr o-
t ocol Repl y and could be used to clean up state specific to the protocol.

void Icel CerrorProc( ice_conn);
ice_conn The ICE connection object.

Notethat every | cel OErr or Pr oc calback must return. Thisisrequired because each active protocol
must be notified of the broken connection, and the application 10 error handler must beinvoked afterwards.




Chapter 14. Multi-Threading Support

To declare that multiple threads in an application will be using the ICE library, use | cel ni t Thr eads

Status I celnitThreads()

Thel cel ni t Thr eads function must bethefirst ICElib function amulti-threaded program calls. It must
complete before any other ICElib call ismade. | cel ni t Thr eads returnsanonzero statusif and only if
it was able to initialize the threads package successfully. Itissafeto call | cel ni t Thr eads more than
once, although the threads package will only be initialized once.

Protocol libraries layered on top of ICElib will have to lock critical sections of code that access an ICE
connection (for example, when generating messages). Two calls, which are generaly implemented as
macros, are provided:

voi d | ceLockConn( ice_conn);
voi d | ceUnl ockConn( ice_conn);
ice_conn The ICE connection object.

To keep an ICE connection locked across several ICElib calls, applicationsuse | ceAppLockConn
and | ceAppUnl ockConn

voi d | ceAppLockConn( ice_conn);
ice_conn The ICE connection object.

The | ceAppLockConn function completely locks out other threads using the connection until
| ceAppUnl ockConn iscalled. Other threads attempting to use | CElib callson the connection will block.
If the program has not previously called | cel ni t Thr eads | ceAppLockConn has no effect.

voi d | ceAppUnl ockConn( ice_conn);
ice_conn The ICE connection object.

The | ceAppUnl ockConn function allows other threads to complete ICEIlib calls on the connection
that were blocked by a previous call to | ceAppLockConn from this thread. If the program has not
previously called | cel ni t Thr eads | ceAppUnl ockConn has no effect.

35



Chapter 15. Miscellaneous Functions

To alocate scratch space (for example, when generating messages with variable data), use | ceAl | oc-
Scr at ch Each ICE connection has one scratch space associated with it. The scratch space starts off as
empty and grows as needed. The contents of the scratch space is not guaranteed to be preserved after any
ICElib function is called.

char *lceAllocScratch( ice_conn, size);

ice_conn The ICE connection object.

size The number of bytes required.

Note that the memory returned by | ceAl | ocScr at ch should not befreed by thecaller. The ICE library
will free the memory when the |CE connection is closed.

36



Chapter 16. Acknowledgements

Thanks to Bob Scheifler for his thoughtful input on the design of the ICE library. Thanks also to Jordan
Brown, Larry Cable, Donna Converse, Clive Feather, Stephen Gildea, Vania Joloboff, Kaleb Keithley,
Stuart Marks, Hiro Miyamoto, Ralph Swick, Jim VanGilder, and Mike Wexler.

37



Appendix A. Authentication Utility
Functions

Asdiscussed in this document, the means by which authentication datais obtained by the ICE library (for
Connect i onSet up messages or Pr ot ocol Set up messages) isimplementation-dependent.t 1

This appendix describes some utility functions that manipulate an ICE authority file. The authority file
can be used to pass authentication data between clients.

The basic operations on the .ICEauthority file are:
» Get filename

» Lock

+ Unlock

* Read entry

» Writeentry

 Search for entry

These arefairly low-level operations, and it is expected that a program, like "iceauth”, would exist to add,
remove, and display entriesin thefile.

In order to use these utility functions, the <X 11/ICE/ICEutil.h> header file must be included.

An entry in the .ICEauthority file is defined by the following data structure:

t ypedef struct {
char *protocol nane;
unsi gned short protocol data | ength;
char *protocol data;
char *network_id;
char *aut h_nane;
unsi gned short auth_data_| ength;
char *auth_dat a;
} lceAuthFileEntry;

The protocol_name member is either "ICE" for connection setup authentication or the subprotocol name,
suchas"XSMP". For each entry, protocol specific data can be specified in the protocol _datamember. This
can be used to search for old entries that need to be removed from the file.

The network_id member isthe network 1D of the client accepting authentication (for example, the network
ID of asession manager). A network 1D has the following form:

tcp/<hostname>:<portnumber>  or
decnet/<hostname>::<objname> or
local/<hostname>:<path>

The X Consortium's ICElib implementation assumes the presence of an I CE authority file.

38



Authentication Utility Functions

The auth_name member is the name of the authentication method. The auth _data member is the actual
authentication data, and the auth_data_length member is the number of bytes in the data.

To obtain the default authorization file name, use | ceAut hFi | eNane

char *IceAuthFileName()

If the ICEAUTHORITY environment variable if set, this value is returned. Otherwise, the default autho-
rization file name is $SHOME/.ICEauthority. This nameis statically allocated and should not be freed.

To synchronously update the authorization file, the file must be locked with acall to | ceLockAut h-
Fi | e Thisfunction takes advantage of the fact that thel i nk system call will fail if the name of the new
link already exists.

int IceLockAuthFile( *file_name, retries, tineout, dead);

file_name The authorization file to lock.

retries The number of retries.

timeout The number of seconds before each retry.

dead If alock already existsthat isthe specified dead seconds old, it is broken. A value of zero

is used to unconditionally break an old lock.
One of three values is returned:
* | ceAut hLockSuccess - thelock succeeded.
e | ceAut hLockError - asystem error occurred, and er r no may prove useful.
e | ceAut hLockTi neout - the specified number of retriesfailed.
To unlock an authorization file, use | ceUnl ockAut hFi | e
int IceUnl ockAuthFile( *file_nane);
file_name The authorization file to unlock.
To read the next entry in an authorization file, use | ceReadAut hFi | eEntry
| ceAut hFi |l eEntry *IceReadAut hFil eEntry( *auth file);
auth file The authorization file.

Note that it is the responsibility of the application to open the file for reading before calling this function.
If an error is encountered, or there are no more entries to read, NULL is returned.

Entries should be freewithacall to | ceFreeAut hFi | eEntry

To write an entry in an authorization file,use |1 ceW it eAut hFil eEntry
Status lceWiteAuthFileEntry( *auth_file, *entry);
auth file The authorization file.

entry The entry to write.

39



Authentication Utility Functions

Note that it is the responsibility of the application to open the file for writing before calling this function.
The function returns a nonzero status if the operation was successful.

To search the default authorization file for an entry that matches a given protocol _name/network _id/
auth_nametuple, usel ceGet Aut hFi | eEntry

| ceAut hFi | eEntry *] ceGet Aut hFi | eEnt ry(protocol _nane, net wor k_i d,
aut h_nane) ;

auth file The name of the protocol to search on.

network_id The network 1D to search on.

auth_name The authentication method to search on.

If | ceGet Aut hFi | eEnt ry failsto find such an entry, NULL isreturned.

To free an entry returned by | ceReadAut hFi | eEntry or | ceGet Aut hFi | eEntry use |ce-
FreeAut hFi |l eEntry

voi d | ceFreeAuthFil eEntry( *entry);

entry The entry to free.

40



Appendix B. MIT-MAGIC-COOKIE-1
Authentication

The X Consortium's ICElib implementation supports a simple MIT-MAGIC-COOKIE-1 authentication
scheme using the authority file utilities described in Appendix A.

In this model, an application, such as a session manager, obtains a magic cookie by calling | ceGener -
at eMagi cCooki e and then stores it in the user's local .1CEauthority file so that local clients can con-
nect. In order to allow remote clients to connect, some remote execution mechanism should be used to
store the magic cookie in the user's .| CEauthority file on aremote machine.

In addition to storing the magic cookie in the .ICEauthority file, the application needsto call the | ce-
Set PaAut hDat a function in order to store the magic cookie in memory. When it comes time for the
MIT-MAGIC-COOKIE-1 authentication procedure to accept or reject the connection, it will compare the
magic cookie presented by the requestor to the magic cookie in memory.

char *I|ceCener at eMagi cCooki e( | ength);
length The desired length of the magic cookie.

The magic cookie returned will be null-terminated. If memory can not be allocated for the magic cookie,
the function will return NULL. Otherwise, the magic cookie should be freed withacall tof r ee

To store the authentication datain memory, use | ceSet PaAut hDat a Currently, thisfunction is only
used for MIT-MAGIC-COOKIE-1 authentication, but it may be used for additional authentication methods
in the future.

voi d | ceSet PaAut hDat a( num entries, *entries);
num_entries The number of authentication data entries.
entries The list of authentication data entries.

Each entry has associated with it a protocol name (for example, "ICE" for ICE connection setup authen-
tication, "XSMP" for session management authentication), a network 1D for the "accepting” client, an
authentication name (for example, MIT-MAGIC-COOKIE-1), and authentication data. The ICE library
will merge these entrieswith previously set entries, based on the (protocol _name, network_id, auth_name)
tuple.

typedef struct {

char *protocol nane;

char *network_id;

char *aut h_nane;

unsi gned short auth_data_ | ength;
char *auth_dat a;

} lceAut hDat aEntry;

41



	Inter-Client Exchange Library
	Table of Contents
	Chapter 1. Overview of ICE
	Chapter 2. The ICE Library - C Language Interface to ICE
	Chapter 3. Intended Audience
	Chapter 4. Header Files and Library Name
	Chapter 5. Note on Prefixes
	Chapter 6. Protocol Registration
	Callbacks for Processing Messages
	Authentication Methods

	Chapter 7. ICE Connections
	Opening an ICE Connection
	Listening for ICE Connections
	Host Based Authentication for ICE Connections
	Accepting ICE Connections
	Closing ICE Connections
	Connection Watch Procedures

	Chapter 8. Protocol Setup and Shutdown
	Chapter 9. Processing Messages
	Chapter 10. Ping
	Chapter 11. Using ICElib Informational Functions
	Chapter 12. ICE Messages
	Sending ICE Messages
	Reading ICE Messages

	Chapter 13. Error Handling
	Chapter 14. Multi-Threading Support
	Chapter 15. Miscellaneous Functions
	Chapter 16. Acknowledgements
	Appendix A. Authentication Utility Functions
	Appendix B. MIT-MAGIC-COOKIE-1 Authentication

